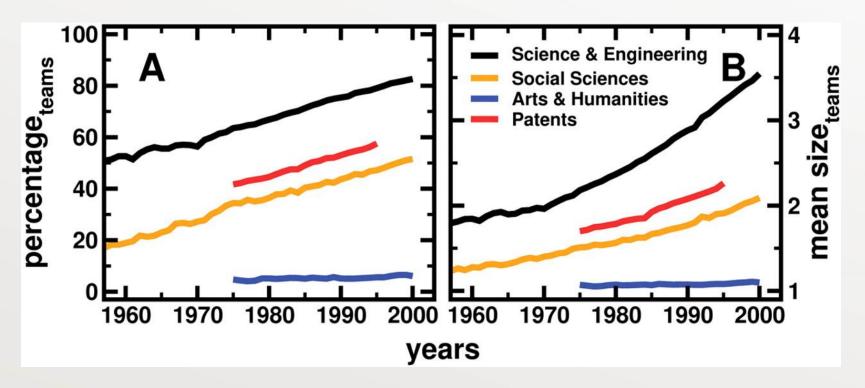


# Individual and Institutional Strategies for Enabling Interdisciplinary Graduate Research and Training Programs

Maura Borrego

University of Texas at Austin

Mechanical Engineering and Curriculum & Instruction




### My background

- BS, MS and PhD in Materials Science and Engineering
- Current interdisciplinary field: Engineering education
- Research on STEM interdisciplinary graduate education, academic research groups, and teaching teamwork
- Experience as Associate Dean for Interdisciplinary Graduate Education



## Team publications, patents and size are increasing over time



Wuchty S, Jones B, Uzzi B. The Increasing Dominance of Teams in Production of Knowledge. Science. 2007 May 18;316(5827):1036-1039. 20 million papers and 2 million patents



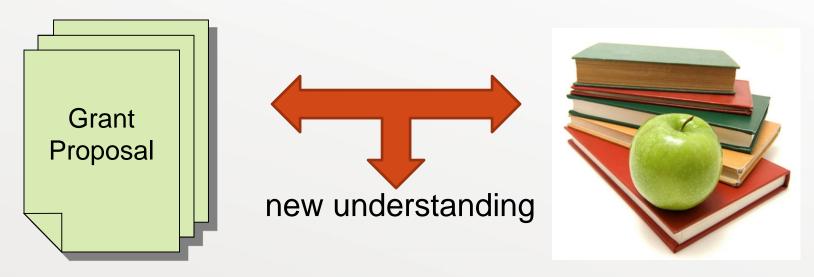


## Benefits of graduate students on interdisciplinary teams

Discuss with your neighbors: what are some of the benefits of including graduate students on interdisciplinary teams?



## Benefits of graduate students on interdisciplinary teams

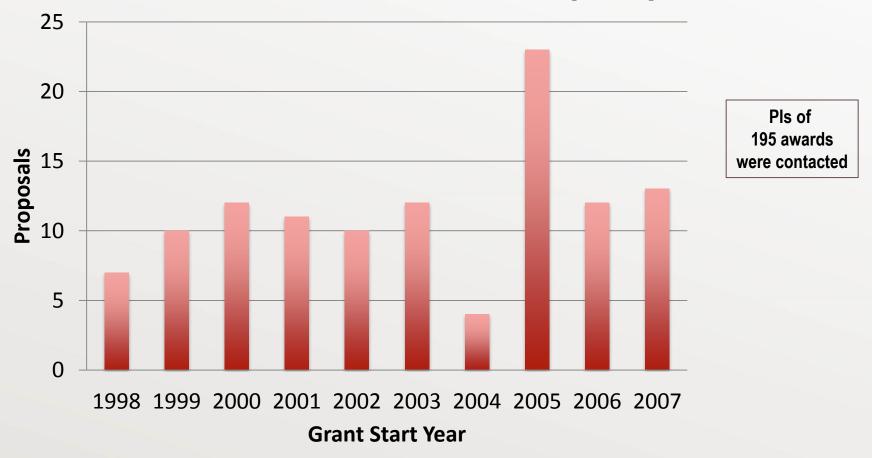

- Help to make connections between departments, disciplines and people through coursework and friends
- Contribute to diversity and creativity, not burdened with strong disciplinary norms
- Students learn intellectual and practical aspects of conducting IDR
- Research and writing gets done



## Interdisciplinary learning outcomes



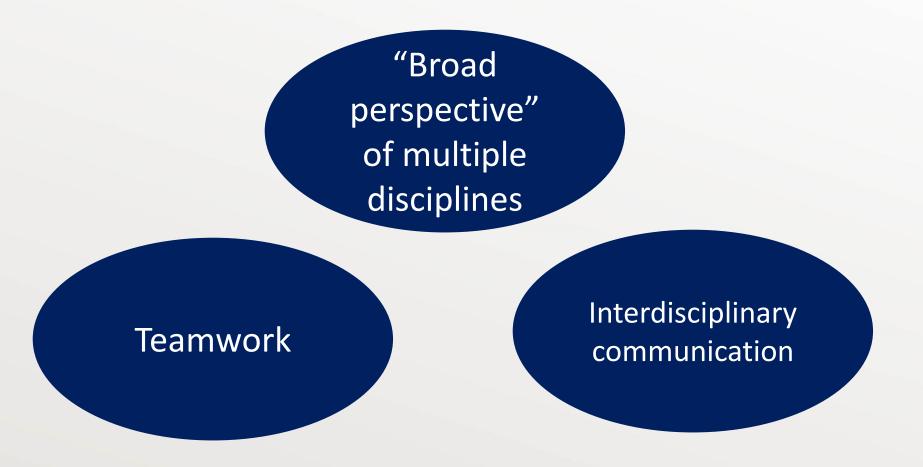
#### Method overview




Values and experience of science and engineering faculty members

Theory, conceptualization and some empirical studies from interdisciplinary studies (humanities)




## Collected and analyzed 130 successful NSF IGERT proposals



Borrego, M., & Newswander, L. K. (2010). Definitions of interdisciplinary research: Toward graduate-level interdisciplinary learning outcomes. *The Review of Higher Education*, *34*(1), *61-84*.



### Findings from proposals





### Perspective/multiple disciplines

- "Students must demonstrate basic competence in mathematics, molecular genetics, computer science, and statistics."
- "appropriate literature, methodologies, principles, and vocabulary necessary to integrate the relevant perspectives."
- "...create an appreciation of the intellectual challenges faced by the respective disciplines, the methodology used to pursue these challenges, and the ability to formulate and solve interdisciplinary problems effectively."



#### **Teamwork**

- "a multidisciplinary team that approaches difficult issues from a range of perspectives can make exciting advances that no single group of investigators could accomplish."
- "most successful multi-disciplinary research takes place collaboratively, in small or large teams"
- "Ph.D. graduates are increasingly required to work in multidisciplinary, and often geographically distributed, teams"



### Interdisciplinary communication

- "We want our students to be capable of communicating their research to scientists who are not specialists in their particular field."
- "communicate effectively, in writing and orally, with both subject area experts and the layperson."
- "As disciplinary language is often a barrier to collaboration and understanding, Fellows will learn to 'speak one another's languages' by studying the approaches, methods, terminology, and questions of other disciplines"



### Steps in interdisciplinary research

- 1. Identifying relevant disciplines,
- 2. Developing adequacy in relevant disciplines,
- 3. Analyzing the problem and evaluating each insight into it,
- 4. Identifying conflicts in insights,
- 5. Creating (or discovering) common ground, and
- 6. Integrating insights and producing an interdisciplinary understanding.

Repko, A. F. (2008). *Interdisciplinary Research. Thousand Oaks, CA: SAGE.* 



## Assessing interdisciplinary work

Purpose suited to ID approach

Disciplinary grounding

Interdisciplinary work Integration across disciplines

Boix Mansilla, V., & Dawes Duraisingh, E. (2007). Targeted assessment of students' interdisciplinary work: An empirically grounded framework proposed *The Journal of Higher Education*, 78(2), 215-237.

Boix Mansilla, V., Dawes Duraisingh, E., Wolfe, C. R., & Haynes, C. (2009). Targeted assessment rubric: An empirically grounded rubric for interdisciplinary writing. *The Journal of Higher Education, 80(3), 334-353.* 

Reflection on ID processes



### Combined list of outcomes

| Engineering &                   |                    | <u>ID Studies</u>               |
|---------------------------------|--------------------|---------------------------------|
| <u>Science</u>                  | Disciplinary       | Disciplinary                    |
| Broad perspective of            | grounding          | grounding                       |
| multiple disciplines            | Integration        | Integration                     |
| Teamwork                        | Teamwork           |                                 |
| Interdisciplinary communication | Communication      | Communication across boundaries |
|                                 | Critical awareness | Critical awareness              |



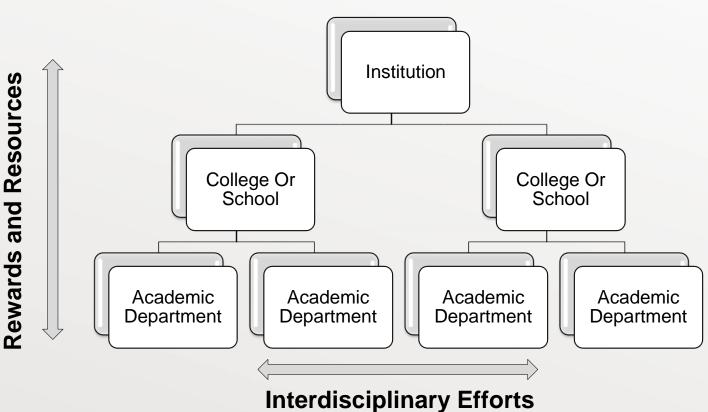
### Training and education interventions

How can we better train graduate students to develop skills in

- Integration,
- Teamwork,
- Communication, and
- Critical awareness?



### Training and education interventions


- Courses, with team projects (proposal writing)
- Lab rotations
- Multiple advisors or broad set of qualified advisors
- Internships
- Seminars across disciplines
- Retreats, orientation
- Workshops, symposia, conferences across disciplines
- Common space (across disciplines)

Borrego, M., & Cutler, S. (2010). Constructive alignment of interdisciplinary graduate curriculum in engineering and science: An analysis of successful IGERT proposals. *Journal of Engineering Education*, 99(4), 355-369.



## Institutional structures and change efforts to support interdisciplinary work







### One concept from organizational change theories









What people think is (or should be) done

Kezar, A. J. (2001). Understanding and Facilitating Organizational Change in the 21<sup>st</sup> Century: Recent Research and Conceptualizations. ASHE-ERIC Higher Education Report Volume 28, Number 4. San Francisco, CA: Jossey-Bass.



### Primary institutionalization mechanisms (annual reports to NSF)

- · Courses, curriculum, teaching load
  - Few solutions for team/ID teaching load
- Graduate education policies
  - Flexibility to fund and advise ID students
- Internal funding
  - Interdisciplinary fellowships
- Faculty hires and policies
  - 253 new ID hires reported in annual reports
- Space, centers and new funding
  - 33-45% of projects reporting center funding (rising)



### Process and advocacy

- IGERT raises the profile for interdisciplinary work on campus
  - More IGERT submissions
  - Advisory committees to provost, president, etc.
- IGERT Pls come together to share best practices, advocate to change policies
- Student organizations are formed
- Pls and Co-Pls move into administration (expand successful programs)



### Policies and change initiatives

- Courses centrally listed or crosslisted
- Advisor eligibility broader than dept
- "Support groups" of interdisciplinary program leaders
  - Focus on policies at UTEP, not specific domain
- External awards to raise awareness and legitimacy – publicize them!
- Promotion, tenure and productivity reporting
- Graduate dean/students as altruistic motivation and allies



### Strategies

- Be creative about institutionalizing grant components
- Use evaluation data to identify and demonstrate effectiveness of most critical components
- Pls and directors, prepare to be experts, leaders, spokespeople for interdisciplinary research
- Develop campus coalitions supporting interdisciplinarity
- Work with graduate dean as an advocate of interdisciplinary graduate education
- Focus on changing <u>policies</u> and <u>attitudes</u> to enable interdisciplinary work



### Bringing it all home

- Which strategies resonate most with you?
- What policies do you most want changed at your institution to facilitate interdisciplinary research?
- What can you do in the next month to promote interdisciplinary research in material systems at your institution?



### Resources

- Collaboration and Team Science: a Field Guide at teamscience.nih.gov
  - Practical advice for collaboration agreements and evaluating contributions for P&T and authorship
- <u>Teamscience.net</u> online training
- AAAS Facilitating Interdisciplinary Research and Education: A Practical Guide
- Many more at www.teamsciencetoolkit.cancer.gov
  - Articles, reports, guides, templates, training tools