

Design of Engineering Material Systems from an Engineering Design Perspective

Chris Paredis

Georgia Institute of Technology George W. Woodruff School of Mechanical Engineering H. Milton Stewart School of Industrial and Systems Engineering Director, Model-Based Systems Engineering Center chris.paredis@me.gatech.edu

Overview

- What is Design?
 - My perspective and mental model of design
 - Design as a search and learning process
- Design Research
 - Current research topics in design
 - Research methodology
 - Design Research in a DEMS context
 - Bottom-up vs. Top-down

What is Design?

Design is a Process with a Purpose... Maximizing Value

- "Everyone designs who devises courses of action aimed at changing existing situations into preferred ones" — Herbert Simon, The Sciences of the Artificial
- How do we, engineers, change existing situations?
 - \rightarrow By creating or improving artifacts such as materials...
- Design is a planning process
 - Primarily a process of information transformation
 - We develop a systematic plan-a model-for how to add value
 - In the final phase, we produce the artifact by executing the plan

In Design, we create a model for how to add value

What do we Mean by Preferred Outcomes? Value over the Product Lifecycle

- Observations:
 - Value flows occur in the future \rightarrow must account for time preferences
 - Value flows are uncertain \rightarrow must account for risk preferences
 - The cost of development influences the overall outcome → must trade off cost/time of development vs quality of artifact → heuristics

$$\mathcal{A}: \max_{a \in A} E[u(NPV(a, t(\mathcal{A}), C(\mathcal{A})))]$$

Search: A Directed Process for Adding Value Strategy for Adding Value Effectively

• Ideation \rightarrow Analysis and Evaluation \rightarrow Selection or Pruning

$$\mathcal{A}: \max_{a \in \mathcal{A}} E[u(NPV(a, t(\mathcal{A}), C(\mathcal{A})))]$$

2016 Copyright © Georgia Tech. All Rights Reserved.

Search: A Directed Process for Adding Value Strategy for Adding Value Effectively

• Ideation \rightarrow Analysis and Evaluation \rightarrow Selection or Pruning

Design as Search Reframing as a Process Search

$$\mathcal{A}: \max_{a \in A} E[u(NPV(a, t(\mathcal{A}), C(\mathcal{A})))]$$

Maximization from a process perspective:

$$\mathcal{P}: \max_{p \in P} E\left[u\left(NPV(a(p), t(p), C(p))\right)\right]$$

- In Design, we make choices about the process, and only indirectly about the artifact
- Process choices are irreversible; artifact "choices" can be reconsidered
- Because the cost of optimizing the process is often larger than the expected benefit, we rely on heuristics

Design as Learning

- Explore a new, previously unknown set of alternatives
 In the course of the search process, we learn!
- The new knowledge has value beyond the current search process... it can be captured/stored and applied towards future problems
- We need to find a good balance between:
 - Exploitation of existing knowledge
 - Exploration to gain new knowledge

Overview

- What is Design?
 - My perspective and mental model of design
 - Design as a search and learning process

Design Research

- Current research topics in design
- Research methodology
- Design Research in a DEMS context
 - Bottom-up vs. Top-down

Design Research

- Computational Decision support tools
 - Representation
 - Uncertainty analysis and decision making under uncertainty
 - Design optimization, reasoning & inference
 - Knowledge capture and reuse modeling, ontology engineering
 - Design as a human activity
 - Ideation, creativity, abstraction, systems thinking,...
 - Sensemaking, framing
 - Multiple decision makers, systems of systems
 - Design in an organizational context decomposition & delegation, concurrency, organizational design

Design Research Methodology

- Goal:
 - Understand develop explanatory models
 - Improve develop better methods and tools
- Collecting evidence in support of research claims
 - Deductive arguments based on theoretical foundations
 - Computational experiments
 - Controlled human subject studies
 - Field work observation of design teams in context

Design research \neq Solving a design problem

Overview

- What is Design?
 - My perspective and mental model of design
 - Design as a search and learning process
- Design Research
 - Current research topics in design
 - Research methodology

Design Research in a DEMS context

– Bottom-up vs. Top-down

An Ever-Expanding Space of Alternatives

Bottom-Up Exploration

Bottom-Up Exploration

Bottom-Up Exploration

- More efficient experimentation
 - Faster generation of samples
 - Faster characterization
 - ... even if it requires sacrificing some accuracy
- More focused experimentation
 - Focus on areas of the materials space that are likely to be of interest, to be "valuable"
 - Bio-inspiration

Bottom-Up Exploration

Top-Down Exploration

A2

A3

А

Top-Down Exploration

Top-Down Exploration

- Better exploration algorithms
 - Decomposition and Parallelization
 - Effective pruning
 - Suitable representation of alternatives
 - Use of most valuable analysis/prediction
 - » Requires info about accuracy and cost of predictions
- Better predictive models
 - Good tradeoff between accuracy and cost
 - Inexpensive...but limited accuracy
 - More accurate...but more expensive

Bottom-Up vs Top-Down Exploration

Bottom-Up vs Top-Down Exploration

Bottom-Up vs Top-Down Exploration

Design Faux-Pas

- I care about multiple materials properties → I should use a multi-objective optimization formulation
 - Theoretically/mathematically, Pareto frontiers are incompatible with decision-making under uncertainty
 - Pareto frontiers reduce the preferences space by one dimension → but how to choose a single alternative?
- "Inverse design" what the heck does that mean?
- We will use atomistic/DFT analyses to predict properties and then do so a million times in a genetic algorithm

Summary

- Design → Efficiently, purposefully, and systematically search for alternatives leading to preferred outcomes
- How can we explore an almost infinite space of material systems more efficiently?
 - Determine how best to capture materials knowledge for design purposes
 - Use design to guide the discovery of new, valuable materials
- Research Methodology
 - Collect evidence in support of claim that the search for material with desired properties is more efficient/effective